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A B S T R A C T

Healthy vascular function is primarily regulated by several factors including EDRF (endothelium-
dependent relaxing factor), EDCF (endothelium-dependent contracting factor) and EDHF
(endothelium-dependent hyperpolarizing factor). Vascular dysfunction or injury induced by aging,
smoking, inflammation, trauma, hyperlipidaemia and hyperglycaemia are among a myriad of risk
factors that may contribute to the pathogenesis of many cardiovascular diseases, such as hyper-
tension, diabetes and atherosclerosis. However, the exact mechanisms underlying the impaired
vascular activity remain unresolved and there is no current scientific consensus. Accumulating
evidence suggests that the inflammatory cytokine TNF (tumour necrosis factor)-α plays a pivotal
role in the disruption of macrovascular and microvascular circulation both in vivo and in vitro.
AGEs (advanced glycation end-products)/RAGE (receptor for AGEs), LOX-1 [lectin-like oxidized
low-density lipoprotein receptor-1) and NF-κB (nuclear factor κB) signalling play key roles in
TNF-α expression through an increase in circulating and/or local vascular TNF-α production. The
increase in TNF-α expression induces the production of ROS (reactive oxygen species), resulting in
endothelial dysfunction in many pathophysiological conditions. Lipid metabolism, dietary supple-
ments and physical activity affect TNF-α expression. The interaction between TNF-α and stem cells
is also important in terms of vascular repair or regeneration. Careful scrutiny of these factors may
help elucidate the mechanisms that induce vascular dysfunction. The focus of the present review is
to summarize recent evidence showing the role of TNF-α in vascular dysfunction in cardiovascular
disease. We believe these findings may prompt new directions for targeting inflammation in future
therapies.

Key words: inflammation, macrovascular circulation, microvascular circulation, nitric oxide, reactive oxygen species (ROS), tumour
necrosis factor-α (TNF-α).
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Figure 1 Pivotal role of TNF-α in vascular dysfunction
Even though numerous risk factors, such as physical inactivity, smoking and over-nutrition, appear to contribute to the development of vascular dysfunction, normal
aging is also an independent factor in the aetiology of cardiovascular diseases. There is evidence, however, that those seemingly diverse processes converge on
modulating TNF-α signalling to lead to the generation of dysfunctional endothelium and the onset of vascular diseases. TNF-α induces the gene expression of various
inflammatory cytokines and chemokines, either dependently or independently of the activation of transcriptional factors, such as NF-κB and AP-1 (activator protein 1).
This TNF-α-mediated signalling initiates and accelerates atherogenesis, thrombosis, vascular remodelling, vascular inflammation, endothelium apoptosis, vascular oxidative
stress and impaired NO bioavailability, which contribute to the blunted vascular function. Dietary supplements and exercise favourably reduce the risk of vascular
dysfunction by inhibiting TNF-α production and (or) TNF-α-mediated signalling. Risk factors in orange demonstrate those factors that converge on TNF-α to induce
vascular dysfunction. Factors in green denote those that protect against vascular damage mediated by TNF-α expression and signalling. TNF-α-induced pathophysiological
conditions related to vascular function are shown in blue. Both vascular risk factors and protective factors affect the regulation of vascular functions by modulating
TNF-α production and downstream signalling. MCP-1, monocyte chemoattractant protein-1; MMP, matrix metalloproteinase; TF, tissue factor.

INTRODUCTION

IHD (ischaemic heart disease) accounts for over 500 000
deaths annually in the United States. AMI (acute
myocardial infarction), also known as a heart attack [1],
is a common complication of IHD. AMI usually results
from plaque rupture with thrombus formation in a
coronary vessel, resulting in an acute reduction in blood
supply to the downstream myocardium. Paradoxically,
re-establishment of the blood supply can exacerbate
vascular injury. Treatment of AMI, such as thrombolysis
and other means of revascularization, often induce
further vascular injury, which contributes to morbidity
and mortality before normal cardiac function restores.

The endothelium is a functional barrier between the
blood vessel and the blood stream, and was once con-
sidered to be relatively inert [2]. However, various func-
tions of ECs (endothelial cells) have been elucidated, such
as the control of fibrinolysis, coagulation, vascular tone,
growth and immune response. The endothelium modu-
lates vascular tone through several factors, including
NO, PGI2 (prostacyclin) and EDHF (endothelium-
dependent hyperpolarizing factor). A hallmark of IHD is

the development of coronary vascular lesions, which are
linked to well-known risk factors, such as diabetes and
obesity conditions associated with increased levels of
inflammatory markers (Figure 1). IHD accelerates the
atherosclerotic process, the earliest event of which is
endothelial dysfunction.

ROLE OF TNF-α (TUMOUR NECROSIS
FACTOR-α) IN ENDOTHELIAL DYSFUNCTION

NO is a free radical generated by NOS (NO synthase) in
a two-step five-electron oxidation of the terminal guan-
idino nitrogen of l-arginine. Three isoforms of NOS have
been characterized: eNOS (endothelial NOS), nNOS
(neuronal NOS) and iNOS (inducible NOS). eNOS and
nNOS are also called cNOS (constitutive NOS) [3].
TNF-α regulates NOS expression and/or activity, which
exerts direct effects on NO production; for example,
human aortic ECs treated with TNF-α for 8 h had
induced iNOS mRNA expression, but down-regulated
eNOS expression [4]. Other studies have also shown that
TNF-α significantly decreased eNOS expression in ECs
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[5–8]. Unlike eNOS, iNOS is transcriptionally regulated
and not normally produced in most cells. iNOS-derived
RNS (reactive nitrogen species) initiate an ONOO−

(peroxynitrite)-mediated mechanism and therefore con-
tribute to nitrative stress and impair endothelial function.

Several mechanisms have been suggested for the
induction/activation of NOS by TNF-α. Yoshizumi et al.
[9] demonstrated that TNF-α markedly reduced mRNA
levels of cNOS in HUVECs (human umbilical vein ECs)
in a dose- and time-dependent manner without changing
the rate of cNOS gene transcription. TNF-α appears to
decrease cNOS mRNA levels by increasing the rate of
mRNA degradation Another study, however, suggested
that TNF-α increases eNOS activity in HUVECs [10].
Activation of eNOS by TNF-α requires activation of Akt
(protein kinase B), a known eNOS activator, via Sph1P
(sphingosine-1-phosphate) receptor activation. Sph1P re-
ceptor is activated by Sph1P, a sphingolipid involved in
proliferation, survival, migration and differentiation of
these cells, generated through N-SMase2 (neutral sphin-
gomyelinase 2) and SK1 (sphingosine kinase 1) activation
[10]. TNF-α-mediated activation of eNOS is accompan-
ied by increased NO generation, which exerts protective
effects on DC (dendritic cell) adhesion to endothelium
induced by TNF-α itself. It has also been suggested
that TNF-α may increase iNOS expression by activating
NF-κB (nuclear factor κB) [11]. TNF-α-induced iNOS
mRNA expression in microvascular ECs could be de-
creased by rooperol (a dicatechol from the South African
plant Hypoxis rooperi) administration, which is an anti-
inflammatory agent in the treatment of several inflammat-
ory disorders [12]. In HUVECs, the effect of TNF-α on
iNOS expression was not affected by statin treatment,
whereas reduced eNOS expression was reversed by
rosuvastatin and ceruvastatin by inhibiting HMG-
CoA (3-hydroxy-3-methylglutaryl-CoA) reductase and
subsequent blocking of isoprenoid synthesis [13].

Evidence suggests that TNF-α impairs endothelium-
dependent and NO-mediated vasodilation in various
vascular beds, e.g. mouse coronary arterioles [14], rat
coronary arterioles [15], cat carotid arteries [16] and
bovine small coronary arteries [17]. Picchi et al. [15]
demonstrated that endothelial dysfunction in pre-
diabetic metabolic syndrome is a result of the effects of
TNF-α and the subsequent production of O2

�− (super-
oxide radical). We have assessed the role of TNF-α in
I/R (ischaemia/reperfusion) injury in TNF 1.6 mice,
which overexpress TNF-α in cardiac tissue. Myocardial
I/R initiated the increase in the expression of TNF-α,
which induced activation of XO (xanthine oxidase) and
the production of O2

�−, leading to coronary endothelial
dysfunction [18]. Gao et al. [14] showed that AGE
(advanced glycation end-product)/RAGE (receptor
for AGEs) and NF-κB signalling play a pivotal role
in elevating circulating and/or local vascular TNF-α
production. The increased TNF-α expression induces the

production of ROS (reactive oxygen species), leading to
endothelial dysfunction in Type 2 diabetes. Endothelial
dysfunction associated with TNF-α in pathophysiolo-
gical conditions is linked to excess production of ROS
and a decrease in NO bioavailability.

TNF-α appears to decrease the bioavailability of NO
by (i) diminishing the production of NO [6,15,17,19],
and (ii) enhancing the removal of NO [14]. Picchi et al.
[15] reported that the real-time production of NO in
isolated coronary arteries from ZOF rats (Zucker Obese
Fatty rats; a model of pre-diabetic metabolic syndrome)
and ACh (acetylcholine)-induced NO production were
significantly lower in ZOF rats compared with the lean
control rats. This result suggested that higher concen-
trations of circulating and protein expression of TNF-α
diminished NO bioavailability in ZOF rat coronary
arteries via the decreased expression of eNOS (Figure 2).
Many studies have shown that the direct effects of TNF-α
on eNOS are via down-regulating eNOS expression
and diminishing NO production in diverse vasculatures
[6,10,14,15]. In addition to eNOS, other factors are also
involved in regulating NO production, and one of those
factors is a functional citrulline/NO cycle [20–23]. The
citrulline/NO cycle is regulated by ASS (argininosuccin-
ate synthase). NO is synthesized from the conversion
of l-arginine into l-citrulline mediated by eNOS, and
ASS catalyses the rate-limiting step in the arginine
regeneration through the citrulline/NO cycle and appears
to be co-ordinately regulated with eNOS activity [24]
(Figure 2). Goodwin et al. [6] have shown that TNF-α
diminished the protein and mRNA expression of ASS in
aortic ECs and directly resulted in the reduced produc-
tion of NO. Gao and co-workers [14,15] reported that
TNF-α impaired NO-mediated vasodilation in Type 2
diabetic coronary arterioles. A neutralizing antibody to
TNF-α decreased the formation of ROS (O2

�−, ONOO−

and H2O2) and improved NO-mediated vasodilation.
TNF-α stimulates the endothelial generation of ROS by
activation of NADPH oxidase, perhaps via the subunits
gp91phox, NOX-1, p47phox and p22phox (Figure 2).

NO has been implicated as the major mediator of
endothelium-dependent relaxation, but EDHF also plays
an important role in regulating vascular tone and vaso-
reactivity, particularly in resistance blood vessels, where
a small change in membrane potential causes a significant
change in diameter [25]. A number of different factors
have been considered as candidates for EDHFs, such as
K+ ions, EET (epoxyeicosatrienoic acid) and H2O2 [26].
Current evidence suggests that EDHF-induced responses
may be mediated by one or a combination of several
factors in different vasculatures [25]. Type 2 diabetes
impairs EDHF-mediated vasodilation [27]; however,
the mechanisms have not been clearly elucidated. For
example, the role of TNF-α in EDHF-mediated vascular
dysfunction is controversial. Wimalasundera et al. [28]
reported that TNF-α did not inhibit EDHF-dependent
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Figure 2 Role of TNF-α in endothelial dysfunction
TNF-α reduces the production of NO through the inhibition of the enzyme activities of ASS and eNOS, and enhances the removal of NO through the increase in
NADPH-dependent O2

�− production to react with NO to form ONOO− . As a consequence, TNF-α decreases the bioavailability of NO to induce relaxation of smooth
muscle in the vasculature. TNF-α also diminishes EETs, one of the candidate EDHFs, via the inhibition of cytochrome P450 (CYP 450) enzyme activity. AA, arachidonic
acid.

vasodilation, whereas Gillham et al. [29] measured a
direct effect of TNF-α on EDHF-mediated vasodilation
by incubation of 1 nmol/l TNF-α for 1 or 2 h with blood
vessels from human omental arteries and showed that
TNF-α impaired EDHF-mediated dilation. In addition,
Kessler et al. [30] found that TNF-α reduced EDHF
synthesis with direct measurement of hyperpolarization
from porcine coronary arteries, and Park et al. [30a]
have shown that EDHF-mediated dilation in coronary
arterioles from Type 2 diabetic mice null for TNF-α
(dbTNF−/dbTNF−) was enhanced compared with Type 2
diabetic (db/db) mice. The possible mechanism of
impaired EDHF-mediated vasodilation by TNF-α
may be via EETs, one of the candidates for EDHF.
EETs are synthesized in the ECs from AA (arachidonic
acid) through cytochrome P450 oxygenase. TNF-α
down-regulated the protein expression of cytochrome
P450 2C, which is the major family of cytochrome P450
mono-oxygenases in porcine aortic ECs [30] (Figure 2).

EFFECT OF TNF-α ON ROS PRODUCTION

The production of ROS can stimulate a cytokine cascade
through NF-κB-induced transcriptional events, which
then induce the expression of TNF-α [31,32]. TNF-α
stimulates O2

�− production in neutrophils and ECs, re-
portedly via CAPK (ceramide-activated protein kinase),

NADPH oxidase [33], XO [34], NOS [35,36] etc. Many
experimental studies suggest that increased O2

�− pro-
duction accounts for a significant proportion of the NO
deficit in diabetic vessels. Potential sources of vascular
O2

�− production include NADPH-dependent oxidases
[37,38], XO [39], lipoxygenase, mitochondrial oxi-
dase and uncoupled NOS [40]. NADPH oxidase appears
to be the principal source of O2

�− production in several
animal models of vascular disease, including diabetes [41].
Furthermore, NADPH oxidase proteins and activity are
present in human blood vessels, including atherosclerotic
coronary arteries [42], and in saphenous veins and mam-
mary arteries from patients with coronary artery disease
[43], which suggests that this oxidase system plays an
important role in cardiovascular diseases [44]. Guzik et al.
[45] have described the mechanisms of increased O2

�−

production in human diabetes mellitus. They found that
basal O2

�− release was significantly elevated in vessels
from patients with diabetes. Western immunoblot ana-
lysis showed increased levels of the p22phox membrane-
bound subunit and the p67phox and p47phox cytosolic
subunits in both veins and arteries from patients with
diabetes. Moreover, engagement of RAGE triggers
signalling cascades in which activation of NADPH
oxidase recruits multiple downstream pathways, includ-
ing p21ras, the MAPKs (mitogen-activated protein
kinases), the JAK (Janus kinase)/STAT (signal trans-
ducer and activator of transcription) pathway, PI3K
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(phosphoinositide 3-kinase), cdc42/rac and nuclear
translocation of NF-κB [46]. As mentioned previously,
NF-κB can be considered as a link between TNF-α
and AGE/RAGE signalling because TNF-α enhanced
RAGE expression by NF-κB activation [32,47–50].

TNF-α activates the transcription of NF-κB, which
regulates the expression of genes involved in inflamma-
tion, oxidative stress and endothelial dysfunction [51–53].
TNF-α initiates the signalling cascades via the IKK [IκB
(inhibitor of NF-κB) kinase] complex, which contains
IKKα and IKKβ. TNF-α predominantly initiates
signalling cascades acting through IKKβ [54,55]. The
inhibitory protein IκBα is phosphorylated, ubiquitinated
and degraded by the proteasome, releasing NF-κB to
translocate into the nucleus. Under normal physiological
conditions, the inflammatory response is terminated
by binding NF-κB with the inhibitory protein IκB
[56,57]. In ECs, NF-κB regulates the inducible expression
of genes encoding TNF-α, IL (interleukin)-6, MCP-1
(monocyte chemoattractant protein-1) and adhesion
molecules in diabetic mice [58]. Shoelson et al. [59]
have detailed the role of IKKβ in inflammation-induced
insulin resistance in obesity and Type 2 diabetes, with
the genetic disruption of the IKKβ signalling pathways
shown to improve insulin resistance. We have shown that
blockade of IKKβ activity by sodium salicylate not only
prevented insulin resistance, but also preserved coronary
arteriolar vasodilation in Type 2 diabetic mice (J. Yang,
Y. Park, H. Zhang, X. Xu, G.A. Laine, K.C. Dellsperger
and C. Zhang, unpublished work). Furthermore, obese
insulin-resistant subjects have endothelial dysfunction
and resistance to endothelium-dependent insulin-
mediated vasodilation [60,61]. Augmentation of insulin
signalling may contribute to endothelium-dependent
NO-mediated vasodilation in diabetic mice treated with
sodium salicylate (J. Yang, Y. Park, H. Zhang, X. Xu,
G.A. Laine, K.C. Dellsperger and C. Zhang, unpublished
work). NF-κB induces TNF-α signalling to accentuate
oxidative stress and endothelial dysfunction induced via
an IKKβ-dependent mechanism, which may be associ-
ated with inflammatory and insulin signalling pathways
seen in Type 2 diabetes. AGE/RAGE signalling, as noted
above, stimulates the production of O2

�−, which could
exacerbate both oxidative stress and impaired bioavailab-
ility of NO. Thus it appears that impaired NO function
may be the direct result of the overproduction of O2

�− in-
duced by TNF-α and AGE/RAGE. O2

�− is the chemical
precursor to many ROS, such as H2O2 and ONOO−.

ROLE OF TNF-α IN LIPID METABOLISM

Both clinical observations and basic research have
indicated a potential link between inflammation and
lipid metabolism. TNF-α acts as a key cytokine that
affects and mediates intermediary metabolism, and a close

relationship between TNF-α and lipid metabolism is
supported by several studies. In patients with hyper-
lipidaemia, TNF-α levels correlated significantly with
the concentrations of VLDL (very-low-density lipo-
protein) -triacylglycerol (triglyceride) and -cholesterol,
and negatively with HDL (high-density lipoprotein)-
cholesterol [62]. Simvastatin and atorvastatin decrease
TNF-α levels in subjects with hyperlipidaemia and
hypercholesterolaemia [63–65]. Furthermore, patients
with type IIa and IIb dyslipidaemia have an abnormal
pattern of TNF-α. HMG-CoA reductase inhibitors
(statins) and PPAR-α (peroxisome-proliferator-activated
receptor-α) activators (fibrates) normalize TNF-α levels
[66]. A high-cholesterol diet induces high levels of serum
TNF-α concentration, whereas the mRNA expression
of TNF-α is significantly reduced by atorvastatin
treatment in hypercholesterolaemic rabbits [67]. TNF-α
blockade could significantly affect lipid metabolism.
Short-term administration of adaluminab, a fully human
anti-TNF-α monoclonal antibody, to patients with active
RA (rheumatoid arthritis), significantly increased HDL-
cholesterol concentrations; in addition, the atherogenic
index decreased [68]. Infliximab, a chimaeric anti-TNF-α
monoclonal antibody, had similar results [69–71].
Administration of TNF-α has been demonstrated to
directly interfere with the plasma lipid level and metabolic
pathways. In mice, administration of TNF-α results in
an acute increase in plasma triacylgycerol concentrations
of 85 %, and inhibition of TNF-α activity blocked the
increase in serum triacylglycerols that is characteristically
observed after LPS (lipopolysaccharide) treatment
[72,73]. The effect of TNF-α on lipid metabolism is
complicated, and the mechanisms are complex and take
place at different levels and through different steps, from
affecting protein expression to inhibiting enzyme activity.
Collectively, these studies prompt the question: why
does TNF-α produce different responses in different
situations? With this controversial background and
in conjunction with previous studies, there is ample
rationale to study the role of TNF-α in lipid metabolism.

AGING AND TNF-α

Epidemiological studies have shown that even normal
aging is an independent risk factor for cardiovascular
diseases [74]. An aging-induced pro-inflammatory
shift plays an important role in vascular regulatory
mechanisms. Previous studies have suggested that
circulating levels of TNF-α are elevated in the elderly [75].
Increased TNF-α production has been demonstrated in
carotid arteries, aortic wall [76] and coronary arteries [77]
of aged rodents. Age-related up-regulation of TNF-α in
rat coronary arteries induced endothelial apoptotic cell
death, which may lead to impaired endothelial function
in the elderly [77]. At the cellular level, TNF-α reduced
the growth rate and in vitro life span of ECs in both
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dose- and treatment-length-dependent manners, sugges-
ting that the aging of ECs is modified by TNF-α exposure
[78]. In contrast, inhibition of TNF-α exerts beneficial
effects in aging-related pathophysiological changes.
In vivo, chronic TNF-α inhibition by etanercept
improves flow-mediated arterial dilation in resistance
arteries of aged female rats [79], as well as down-regulates
the expression of inflammatory markers, including iNOS
and ICAM-1 (intercellular adhesion molecule-1), which
are abundantly expressed in aged vessels. In carotid
arteries of young animals, recombinant TNF-α induced
endothelial dysfunction, oxidative stress and increased
apoptosis and pro-inflammatory gene expression,
mimicking many of the symptoms of vascular aging [74].
Thus dysregulation of TNF-α expression is associated
with vascular aging, and anti-TNF-α treatment exerts
anti-aging vasculoprotective effects.

To sum up, aging is an independent factor in vascular
dysfunction. In the presence of other risk factors, such
as smoking and over-nutrition, the development of
endothelial dysfunction might be accelerated. Those risk
factors converge on TNF-α to cause vascular oxidative
stress, vascular remodelling, thrombosis, cell infiltration,
apoptosis, vascular inflammation etc., and therefore lead
to vascular damage (Figure 1).

TNF-α AND HIGH-FAT AND
HIGH-CARBOHYDRATE DIETS

The effects of over-nutrition on endothelial dysfunction
in healthy subjects and subjects with dyslipidaemia, the
metabolic syndrome and diabetes have been examined
in many studies. Endothelial function was markedly
impaired by a high-fat meal that caused an acute
hypertriacylglycerolaemia. This impairment was evident
in patients with dyslipidaemia with baseline hypertriacyl-
glycerolaemia, but not in controls with normotriacylgly-
cerolaemia [80]. Compared with the control group, sub-
jects with metabolic syndrome had reduced endothelial
function, as assessed using the l-arginine test, and higher
circulating levels of TNF-α. Following the high-fat meal,
both triacylglycerol and TNF-α levels increased more
in subjects with the metabolic syndrome than in normal
subjects, whereas endothelial function decreased more in
subjects with the metabolic syndrome [81]. Moreover,
in healthy subjects, the high-fat meal increased plasma
levels of TNF-α, IL-6, ICAM-1 and VCAM-1 (vascular
cell adhesion molecule-1), while the high-carbohydrate
meal had no effects in these subjects. In patients with
diabetes, both meals significantly increased cytokine and
adhesion molecule levels, but the increase lasted longer
following the high-fat meal [82]. On the basis of the sig-
nificant relationship between increases in TNF-α levels
and decreases in endothelial function in subjects with the
metabolic syndrome and diabetes [81], the mechanisms of

TNF-α-induced endothelial dysfunction following high-
energy diets has been extensively studied at the molecular
and cellular levels. Intraluminal butter administration
significantly increased TNF-α expression in lamina
proprial macrophage and lymphocyte adherence to
intestinal microvessels, accompanied by increases in the
expression levels of ICAM-1, MAdCAM-1 (mucosal
adhesion cell adhesion molecule-1) and VCAM-1.
Furthermore, anti-TNF-α treatment attenuated the
enhanced expression of adhesion molecules induced
by butter administration [83]. Therefore high-energy
diets may cause endothelial dysfunction, as well as
potentiate TNF-α-mediated EC injury [84]. Reducing
saturated fat and dietary cholesterol intake and avoiding
excess calories remains the cornerstone of the dietary
approaches to decrease the risk of vascular diseases.

ROLE OF EXERCISE IN CARDIOVASCULAR
DISEASE

Pro-inflammation events, such as the increases in TNF-α,
CRP (C-reactive protein), IL-6 and resistin, appear
to produce their harmful effects, at least in part, by
inducing endothelial dysfunction and also by decreasing
endothelial NO generation. NO inhibits platelet
adherence and aggregation, suppresses vasoconstriction,
reduces the adherence of leucocytes to the endothelium
and suppresses the proliferation of VSMCs (vascular
smooth muscle cells) [85]. Of these pro-inflammatory
cytokines, TNF-α is a key player in systemic low-
level inflammation through stimulating the expression
of adhesion molecules on ECs and thereby inducing
endothelial dysfunction [85,86]. TNF-α is a strong
biological driver of the metabolic syndrome, which
is characterized by abdominal obesity, hypertension, a
reduced level of HDL, elevated triacylglycerols and high-
fasting glucose, and constitutes an important risk factor
in atherosclerosis and Type 2 diabetes [86]. Keller et al.
[87] have reported that TNF-α overexpression returned
to normal levels after 1 h of acute swimming exercise
in TNFR (TNF receptor)-knockout mice. In addition,
chronic exercise appears to suppress pro-inflammatory
factors, such as TNF-α, CRP and IL-6, and augment
anti-inflammatory factors, including IL-4, IL-10, TGF-β
(transforming growth factor-β) and adiponectin, even
though these results showed discrepancies according to
the modes, intensity and time duration of exercise [86,88–
90]. Therefore the anti-inflammatory effects of exercise
may offer protection against TNF-α-induced insulin res-
istance and the secondary development of cardiovascular
dysfunction. In summary, regular exercise contributes
to the prevention of cardiovascular dysfunction by con-
trolling traditional cardiovascular risk factors, including
HDL- and LDL (low-density lipoprotein)-cholesterol,
improving antioxidant factors, such as SOD (superoxide
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dismutase) and glutathione peroxidase, elevating the anti-
inflammatory effect and suppressing TNF-α, which is the
main pro-inflammatory cytokine (Figure 1).

TNF-α AND STEM CELLS/PROGENITOR
CELLS

Stem and progenitor cells possess the ability to self-
regenerate and differentiate into many cell types,
including cardiovascular-specific forms. The role of stem
cells and progenitor cells in cardiovascular diseases has
been widely investigated. As inflammation is involved
in most cardiovascular diseases, understanding the
communication and interaction between TNF-α and
stem cells is important. Clinical evidence has shown that
the serum TNF-α level was negatively correlated with
peripheral blood CD34+ stem cells and circulating EPCs
(endothelial progenitor cells) in the early and late stages
of congestive heart failure, which might be related to the
myelosuppressive effect of TNF-α [91]. A similar ob-
servation was also reported in a mouse model of conges-
tive heart failure, with increased serum TNF-α levels and
decreased bone marrow progenitor cells [92]. In vitro stu-
dies have indicated a causal relationship between TNF-α
and suppression of haemopoietic stem cell growth.
Rusten et al. [93] reported that TNF-α directly inhibited
SCF (stem cell factor)-stimulated proliferation of CD34+

haemopoietic progenitor cells. Similar results were also
demonstrated in human CD34+ myeloid leukaemia
cells and primitive human bone marrow progenitor cells
(CD34+CD38−) [94,95]. Interestingly, the inhibitory
effects of TNF-α in these studies were consistently
mediated by TNFR-I, but not TNFR-II. On the contrary,
the TNFR-II signalling pathway has a protective profile
on stem cell function. Chen et al. [96] have demonstrated
that TNF-α-overexpressing cardiomyocytes attracted
increased numbers of embryonic stem cells, mediated
by TNFR-II in the embryonic stem cells. Treatment
with TNFR-II-overexpressing mesenchymal stem
cells attenuated cardiac dysfunction after myocardial
infarction [97]. The expression of TNFR-II on bone-
marrow-derived progenitor cells was required for
ischaemia-induced neovascularization [98]. Thus distinct
effects of TNF-α are mediated by different subtypes of
TNFRs in stem cells, whereas the overall effect might be
dependent on the expression level and ratio of these two
receptors.

Apart from the direct effects, TNF-α is able to indir-
ectly influence the fate of stem cells. TNF-α markedly
stimulates production of GM-CSF (granulocyte/macro-
phage colony-stimulating factor), a strong mobilizer of
stem cells from bone marrow [99]. Activation of the
TNF-α/Fas pathway in lymphocytes in the bone marrow
may play a pathogenic role in suppressing haemopoiesis
[92]. In the peripheral circulation, EPC adhesion to

HUVECs was significantly increased by TNF-α pre-
treatment with HUVECs; the adhesion was mediated by
the up-regulation of E-selectin on the cells. Interestingly,
when EPCs rather than HUVECs were stimulated with
TNF-α, EPC adhesion to HUVECs was not induced
[100]. TNF-α also has effects on stem cell differentiation:
administration of TNF-α switched the differentiation of
these cells from granulocytes to almost complete produc-
tion of macrophages when mouse Lin−Sac+ haemopoietic
progenitor cells were cultured with SCF and IL-7
[101].

In summary, TNF-α plays an important role in regu-
lating stem-cell-mediated vascular reparation and remod-
elling; however, the overall effect of TNF-α on stem cell
mobilization, proliferation and function is complicated,
depending on the TNFR subtypes and the presence of
other cytokines as well as other cells (Figure 1).

ANTI-TNF-α TREATMENT IN CLINICAL
STUDIES

As a potent pro-inflammatory trigger, the central role of
TNF-α in vascular dysfunction has been demonstrated
by the ability of agents that block the action of TNF-α
to treat a range of cardiovascular disorders and
inflammatory conditions, including AMI, heart failure,
RA, diabetes, hyperlipidaemia and COPD (chronic
obstructive pulmonary disease).

Intra-arterial TNF-α infusion in healthy volunteers
and patients provides direct evidence about TNF-α-
stimulated vascular dysfunction. In healthy volunteers,
intra-arterial TNF-α at a dose of 80 or 240 ng/min for
30 min resulted in an acute local vascular inflammation
that was associated with impaired endothelium-de-
pendent vasomotion, as well as a sustained and substantial
increase in endothelial t-PA (tissue plasminogen
activator) release [102]. A dose of 17 ng/min for 60 min
increased the basal bioavailability of the vasoconstrictor
prostaglandin and reduced the basal bioavailability
of NO, although it had no effects on endothelium-
dependent vasomotion in healthy subjects [103]. In
patients with coronary heart disease, intra-arterial
TNF-α at a dose of 80 ng/min for 60 min caused an
increase in t-PA concentrations without affecting blood
flow [104]. In patients with Type 2 diabetes, intra-arterial
infusion with TNF-α (10 ng · 100 ml−1 of forearm
volume · min−1 for 2 h) induced the impairment of
endothelial function in resistance vessels [105].

On the basis of the important role of TNF-α in
inducing endothelial dysfunction, clinical trials are under
way to investigate the use of the three currently available
TNF-α inhibitors (infliximab, etanercept or adalimu-
mab), as well as others, in vascular disorders accompanied
by several diseases. Chronic anti-inflammatory treatment
with the anti-TNF-α antibody infliximab improved
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endothelial function of the brachial artery in patients
with RA [106,107], systemic vasculitis [108] and Crohn’s
disease [109]. Anti-TNF-α therapy with etanercept,
a recombinant TNFR that binds to and functionally
inactivates TNF-α, and adalimumab, a fully human
monoclonal antibody directed against TNF-α, were also
able to improve endothelial function in patients with RA
[110,111]. In patients with advanced heart failure, etaner-
cept improves systemic endothelial vasodilator capacity
[112], although studies using anti-TNF-α antibodies in
chronic heart failure have been terminated prematurely
owing to a lack of benefit on the rate of death or hospital-
ization [113]. However, although short-term etanercept
treatment had a significant beneficial effect on systemic
inflammatory markers, no improvement in vascular or
metabolic insulin sensitivity was observed in obese
patients with Type 2 diabetes [114]. In addition to TNF-α
inhibitors, various statins, such as atorvastatin and sim-
vastatin, and the ACEI (angiotensin-converting enzyme
inhibitor) quinapril were reported to decrease circulating
TNF-α levels, as well as improve endothelial function in
patients with Type 2 diabetes, congestive heart failure, RA
or hyperlipidaemia [65,115–121]. Therefore, although the
efficacy and safety of anti-TNF-α biologicals have been
extensively studied in treating vascular complications
of inflammatory diseases, such as RA and Crohn’s
disease, the use of TNF-α inhibitors and antibodies in
cardiovascular disease and Type 2 diabetes may need to be
evaluated further by randomized controlled clinical trials
or long-term observational studies. Furthermore, direct
evidence may be needed to address the causal relationship
between the effects of statins and ACEIs in attenu-
ating TNF-α production and improving endothelial
function.

To sum up, the evidence above suggests an important
role of TNF-α in vascular dysfunction. These studies
may support the long-term use of drugs that block
TNF-α function to reduce the high incidence of cardi-
ovascular disorders and vascular complications in various
diseases.

CONCLUDING REMARKS

Recent research in animal models and humans provides
compelling evidence identifying TNF-α as one of several
regulators of vascular homoeostasis. Major progress has
been made in unveiling the molecular mechanisms that
underlie the multiple vasculoprotective actions of anti-
TNF-α. However, many of the mechanisms proposed
in the present review are based on in vitro studies and,
thus, the physiological relevance of these findings remains
to be confirmed in vivo. Our understanding of TNF-α
and TNFR, especially with respect to structure–function
relationships and their pathophysiological role in vascular
dysfunction, is still in its infancy. There have been trials

using TNF-α antagonists in heart failure, but there are
very few trials using TNF-α antagonists (soluble recep-
tors) in vascular disease. Although TNF-α antagonists
(soluble receptors) have been shown to lack benefits on
the rate of death or hospitalization in chronic heart failure,
there have been trials using TNF-α antagonists in vascular
complications of inflammatory diseases, such as RA
and Crohn’s diseases. These studies suggested beneficial
effects of anti-TNF-α treatment in improving vascular
function; however, there are very few trials applying anti-
TNF-α treatment in vascular diseases and cardiovascular
disorders related to Type 2 diabetes and the metabolic
syndrome. Is it time to revisit antagonism of TNF-α in
cardiovascular diseases? We believe that further investiga-
tions in this exciting field could facilitate the development
of selective TNF-α antagonists with therapeutic potential
in the management of diabetes and other vascular
diseases.
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